Brief introduction of 134272-64-3

The synthetic route of 134272-64-3 has been constantly updated, and we look forward to future research findings.

With the rapid development and complex challenges of chemical substances, new drug synthesis pathways are usually the most effective.134272-64-3,N-(2-Aminoethyl)maleimide Hydrochloride,as a common compound, the synthetic route is as follows.

Step 2: To a solution of the NHS ester, compound 6a (12.3 mg, 0.011 mmol) and N-(2- aminoethyl)maleimide hydrochloride (2.0 mg, 0.011 mmol) in anhydrous dichloromethane (0.3 niL) was added DIPEA (0.0022 niL, 0.013 mmol). The mixture was stirred at room temperature for 3 hours then it was stripped under reduced pressure. The residue was purified by semi-preparative reverse phase HPLC (CI 8 column, CH3CN/H2O). The fractions that contained pure product were combined, frozen and lyophilized to give the desired maleimide, compound D6 (10 mg, 80% yield). LCMS = 8.3 min (15 min method). MS (m/z): 1181.8 (M + 1)+.

The synthetic route of 134272-64-3 has been constantly updated, and we look forward to future research findings.

Reference£º
Patent; IMMUNOGEN, INC.; KOVTUN, Yelena; TAVARES, Daniel; RUI, Lingyun; CHITTENDEN, Thomas; (386 pag.)WO2017/4026; (2017); A1;,
Pyrroline – Wikipedia
1-Pyrroline | C4H7N – PubChem

Some tips on 151038-94-7

151038-94-7 6-(2,5-Dioxo-2,5-dihydro-1H-pyrrol-1-yl)hexanehydrazide 2,2,2-trifluoroacetate 23509306, apyrrolines compound, is more and more widely used in various.

151038-94-7, 6-(2,5-Dioxo-2,5-dihydro-1H-pyrrol-1-yl)hexanehydrazide 2,2,2-trifluoroacetate is a pyrrolines compound, ?involved in a variety of chemical synthesis. Rlated chemical reaction is continuously updated

Synthesis of acetate 4-(l-(2-(6-(2,5-dioxo-2H-pyrrol-l(5H)- l)hexanoyl)hydrazono)ethyl) phenyl carbamate oxaliplatin: Acetoxyoxalplatin(4- acetylphenyl)carbamate (228 mg, 0.36 mmol, 1.00 equiv.) was dissolved in DMF (0.05 M, 7 mL) and treated with 6-(2,5-dioxo-2,5-dihydro-lH-pyrrol-l-yl)hexanehydrazide TFA salt (158 mg, 0.47 mmol, 1.30 equiv.). The reaction mixture was stirred at room temperature for 16 hours. The reaction mixture was concentrated and the residue was triturated with acetonitrile to precipitate the product as a yellow powder. This powder was triturated first with isopropyl alcohol (iPrOH) and then with DCM to afford the desired product (70 mg, 23%, 93.5% pure). HPLC-MS 93.5%, m/z for C29H38N60iiPt [(M+H)+] = 842.3. NMR (500 MHz, DMF-dv) delta 10.34-10.15 (m, 1H), 9.91-9.66 (m, 1H), 9.37- 9.24 (m, 1H), 8.88-8.66 (m, 2H), 8.59-8.48 (m, 1H), 7.80-7.73 (m, 2H), 7.61-7.53 (m, 2H), 7.04-6.98 (m, 2H), 3.50-3.43 (m, 2H), 3.14-3.02 (m, 1H), 2.75-2.70 (m, 1H), 2.43- 2.25 (m, 6H), 2.01-1.92 (m, 3H), 1.74-1.53 (m, 9H), 1.42-1.24 (m, 4H).

151038-94-7 6-(2,5-Dioxo-2,5-dihydro-1H-pyrrol-1-yl)hexanehydrazide 2,2,2-trifluoroacetate 23509306, apyrrolines compound, is more and more widely used in various.

Reference£º
Patent; PLACON THERAPEUTICS, INC.; KADIYALA, Sudhakar; MOREAU, Benoit; BILODEAU, Mark T.; WHALEN, Kerry; SINGH, Sukhjeet; WOOSTER, Richard; LEMELIN, Charles-Andre; (151 pag.)WO2016/209935; (2016); A1;,
Pyrroline – Wikipedia
1-Pyrroline | C4H7N – PubChem

Simple exploration of 1334177-86-4

1334177-86-4 1-(2,5-Dioxo-2,5-dihydro-1H-pyrrol-1-yl)-3-oxo-7,10,13,16,19,22,25,28-octaoxa-4-azahentriacontan-31-oic acid 51340955, apyrrolines compound, is more and more widely used in various.

With the rapid development and complex challenges of chemical substances, new drug synthesis pathways are usually the most effective.1334177-86-4,1-(2,5-Dioxo-2,5-dihydro-1H-pyrrol-1-yl)-3-oxo-7,10,13,16,19,22,25,28-octaoxa-4-azahentriacontan-31-oic acid,as a common compound, the synthetic route is as follows.

EDCI (56 mg, 0.29 mmol) was added to a stirred solution of MAL-dPEG8-acid (172 mg,0.29 mmol, Stratech Scientific Limited) and the amine 110 (261 mg, 0.26 mmol) in dry DCM(10 mL) at room temperature. The reaction mixture was stirred under an argon atmospherefor 2.5 hours at which point analysis by LC/MS showed complete conversion to desiredproduct at retention time 1 .38 minutes, ES+ mlz 1585 [M+ Na], 1563 [M+ H].Thereaction mixture was diluted with DCM (30 mL) and washed with H20 (20 mL), brine (2 x20 mL), dried (Mg504), filtered and evaporated in vacuo to provide the crude product. Purification by lsoleraTM (DCM/MeOH, SNAP Ultra 25 g, 75 mL per minute) gave the amideIll (eluting at 91% DCM/MeOH) as a white foam (277 mg, 67% yield).

1334177-86-4 1-(2,5-Dioxo-2,5-dihydro-1H-pyrrol-1-yl)-3-oxo-7,10,13,16,19,22,25,28-octaoxa-4-azahentriacontan-31-oic acid 51340955, apyrrolines compound, is more and more widely used in various.

Reference£º
Patent; MEDIMMUNE LIMITED; HOWARD, Philip Wilson; GREGSON, Stephen John; (207 pag.)WO2018/192944; (2018); A1;,
Pyrroline – Wikipedia
1-Pyrroline | C4H7N – PubChem

Simple exploration of 73286-71-2

73286-71-2 N-Boc-2-pyrroline 10844857, apyrrolines compound, is more and more widely used in various.

With the rapid development and complex challenges of chemical substances, new drug synthesis pathways are usually the most effective.73286-71-2,N-Boc-2-pyrroline,as a common compound, the synthetic route is as follows.

N-Boc pyrroline (270 mg; 1.60 mmol), chloro oxime 2f (470 mg; 3.00 mmol) and sodium bicarbonate (760 mg; 9.04 mmol) in isopropanol (10 mL) were heated at 40 C. overnight. An additional portion of chloro oxime and sodium bicarbonate was added and heating continued for 20 hours. After cooling, the volatiles were evaporated. The residue was dissolved in ethyl acetate (50 mL), and washed with water (50 mL). The organic layer was dried (MgSO4), filtered and evaporated. Cycloadduct 3f was isolated as a beige powder after chromatography with 70% ethyl acetate/hexanes.MS 290 (M+H).

73286-71-2 N-Boc-2-pyrroline 10844857, apyrrolines compound, is more and more widely used in various.

Reference£º
Patent; Macielag, Mark J.; Weidner-Wells, Michele A.; Lin, Shu-Chen; US2009/29980; (2009); A1;,
Pyrroline – Wikipedia
1-Pyrroline | C4H7N – PubChem

New learning discoveries about 25021-08-3

As the paragraph descriping shows that 25021-08-3 is playing an increasingly important role.

25021-08-3, 2-(2,5-Dioxo-2,5-dihydro-1H-pyrrol-1-yl)acetic acid is a pyrrolines compound, ?involved in a variety of chemical synthesis. Rlated chemical reaction is continuously updated

Trifluoroacetic Acid/L-alanyl-N5-carbamoyl-N-(4-{[(2,5-dioxo-2,5-dihydro-1H-pyrrol-1-yl)acetyl]amino}phenyl)-L-ornithinamide (1:1) The title compound was prepared from 1,4-phenylenediamine sequentially according to classical methods of peptide chemistry. In the first step, 942 mg (8.72 mmol) of 1,4-phenylenediamine were monoacylated with 0.8 g (2.9 mmol) of N2-(tert-butoxycarbonyl)-N5-carbamoyl-L-ornithine in the presence of HATU and N,N-diisopropylethylamine. In the second step, in an analogous manner, the second anilinic amino group was acylated with (2,5-dioxo-2,5-dihydro-1H-pyrrol-1-yl)acetic acid in the presence of HATU and N,N-diisopropylethylamine. Deprotection with TFA, coupling with 2,5-dioxopyrrolidin-1-yl N-(tert-butoxycarbonyl)-L-alaninate and another deprotection with TFA then gave, in 3 further synthesis steps, the title compound, 148 mg of which were obtained by this route. LC-MS (Method 1): Rt=0.21 min; MS (ESIpos): m/z=474 (M+H)+. LC-MS (Method 4): Rt=0.2 min; MS (ESIpos): m/z=474 (M+H)+.

As the paragraph descriping shows that 25021-08-3 is playing an increasingly important role.

Reference£º
Patent; Bayer Pharma Aktiengesellschaft; LERCHEN, Hans-Georg; REBSTOCK, Anne-Sophie; CANCHO GRANDE, Yolanda; MARX, Leo; STELTE-LUDWIG, Beatrix; TERJUNG, Carsten; MAHLERT, Christoph; GREVEN, Simone; SOMMER, Anette; BERNDT, Sandra; (684 pag.)US2018/169256; (2018); A1;,
Pyrroline – Wikipedia
1-Pyrroline | C4H7N – PubChem

New learning discoveries about 1122-10-7

As the paragraph descriping shows that 1122-10-7 is playing an increasingly important role.

1122-10-7, 3,4-Dibromo-1H-pyrrole-2,5-dione is a pyrrolines compound, ?involved in a variety of chemical synthesis. Rlated chemical reaction is continuously updated

Example 2 Synthesis of 39-(3,4-dibromo-2,5-dioxopyrrolyl)-3,6,9,12,15,18,21,24,27,30,33,36-dodecaoxanonatriacontanoic acid A 100 mL two-necked round bottom flask was flame dried and cooled under nitrogen. The cooled flask was charged with 200 mg (0.296 mmol) of tert-butyl 39-hydroxy-3,6,9,12,15,18,21,24,27,30,33,36-dodecaoxanonatriacontanoate. Triphenylphosphine, 106 mg, was dissolved in about 5 mL anhydrous tetrahydrofuran in a vial, and the solution was added to the 100 mL flask via cannula under nitrogen. The 100 mL flask was cooled in an ice-water bath for 15 minutes. To the cooled solution was added 55 mg (0.217 mmol) 3,4-dibromopyrrole-2,5-dione with stirring until a clear solution was observed. DIAD, 58.3 muL, was added to the cooled reaction mixture, which was stirred in the ice bath for an additional 10 minutes. The reaction mixture was stirred and allowed to reach room temperature over about 20 hours, then concentrated on a rotary evaporator until dry, giving a yellow viscous oil, which was absorbed onto about 1 g silica gel and dry-loaded onto a Reveleris normal phase chromatography unit. The oil was eluted over a 12 g silica gel cartridge with a methanol:dichloromethane gradient from 1:0 to 9:1 over 28 column volumes. The fractions containing the desired product were pooled and concentrated to dryness. The purified product was suspended in 50:50 acetonitrile:water and lyophilized overnight to provide a clear light yellow viscous oil.

As the paragraph descriping shows that 1122-10-7 is playing an increasingly important role.

Reference£º
Patent; Igenica Biotherapeutics, Inc.; Jackson, David Y.; Ha, Edward; Probst, Gary D.; US2014/363454; (2014); A1;,
Pyrroline – Wikipedia
1-Pyrroline | C4H7N – PubChem

Simple exploration of 1122-10-7

1122-10-7 3,4-Dibromo-1H-pyrrole-2,5-dione 14279, apyrrolines compound, is more and more widely used in various.

With the rapid development and complex challenges of chemical substances, new drug synthesis pathways are usually the most effective.1122-10-7,3,4-Dibromo-1H-pyrrole-2,5-dione,as a common compound, the synthetic route is as follows.

Reference Example 49 Preparation of Bromo-dansyl-cystamine-maleimide A round bottomed flask was charged with di-dansyl cystamine (48 mg, 0.08 mmol), TCEP (23 mg, 1 eq), and MeOH (10 ml). The reaction mixture was stirred at ambient temperature under argon for 3 hrs. Dibromomaleimide (41 mg, 2 eq) in MeOH (10 ml), was added to the reaction mixture. After 16 hrs, the reaction mixture was concentrated in vacuo. The residue was worked up with DCM and brine. The organic layers were combined, dried (MgSO4) and purified by flash chromatography (silica gel, 0-15% EtOAC-DCM) to yield the desired compound (17 mg, 22%). 1HNMR (CDCl3, 600 MHz), delta8.5 (1H, d J 8.5 Hz aromatic H’s), delta8.2 (2H, m aromatic H’s), delta7.6 (1H, s CONH), delta7.53 (2H, m, aromatic H’s), delta7.15 (1H, d, J=7.4 Hz aromatic H’s), delta5.30 (1H, t, J 5.6 SO2NH), delta3.38 (2H, t, J 6.3 SCH2), delta3.26 (2H, q, J 6.3 NHCH2), delta2.88 (6H, s NCH3); 13CNMR (CDCl3, 150 MHz), delta165.5, 162.9, 152.2, 142.5, 134.5, 130.95, 129.94, 129.92, 129.5, 128.7, 123.3, 119.0, 118.5, 115.4, 45.5, 43.7, 30.5; IR (cm-1) 3295 (br) 1726 (s) MS (ES+) m/z relative intensity: 485 (M, 100); Exact mass calculated for [C18H19N3O4S2Br] requires m/z 484.0000. Found 783.9982.

1122-10-7 3,4-Dibromo-1H-pyrrole-2,5-dione 14279, apyrrolines compound, is more and more widely used in various.

Reference£º
Patent; UCL Business Plc; Smith, Mark; Caddick, Stephen; Baker, James; Chudasama, Vijay; (80 pag.)US9295729; (2016); B2;,
Pyrroline – Wikipedia
1-Pyrroline | C4H7N – PubChem

Brief introduction of 17057-04-4

The synthetic route of 17057-04-4 has been constantly updated, and we look forward to future research findings.

With the rapid development and complex challenges of chemical substances, new drug synthesis pathways are usually the most effective.17057-04-4,4-(2,5-Dioxo-2,5-dihydro-pyrrol-1-yl)-benzoicacid,as a common compound, the synthetic route is as follows.

General procedure: An oven-dried flask was cooled under a stream of nitrogen and charged with azomethine N-oxide 1 (5 mmol), maleimide 2 (5 mmol) and sodium dried toluene (25 mL). The flask was equipped with a reflux condenser and the mixture was refluxed for 6 hrs (Scheme 3) until the substrates were consumed as judged by TLC. On completion the reaction mixture was concentrated and the precipitated compound was filtered. The crude product consists of a mixture of cis and trans isomers which was subjected to column chromatography over silica gel (100-200 mesh) using hexane: ethyl acetate (9:1) mixture as eluent.

The synthetic route of 17057-04-4 has been constantly updated, and we look forward to future research findings.

Reference£º
Article; Kaur, Anjandeep; Singh, Baldev; Jaggi, Amteshwar Singh; Bioorganic and Medicinal Chemistry Letters; vol. 23; 3; (2013); p. 797 – 801;,
Pyrroline – Wikipedia
1-Pyrroline | C4H7N – PubChem

Analyzing the synthesis route of 17057-04-4

The synthetic route of 17057-04-4 has been constantly updated, and we look forward to future research findings.

17057-04-4, 4-(2,5-Dioxo-2,5-dihydro-pyrrol-1-yl)-benzoicacid is a pyrrolines compound, ?involved in a variety of chemical synthesis. Rlated chemical reaction is continuously updated

General procedure: Equimolar quantities of maleimide (2) and nitrones (5a-k and 6a-k) were refluxed in toluene (20 ml) and ethyl alcohol (5 ml) for 8-10 h (TLC monitoring using petroleum ether and hexane 1:1) followed by cooling with addition of dry ether. The products (7a-k and 8a-k) were separated out after filtration and recrystallized from toluene and petroleum ether mixture (1:1) to yield cis-isomers (7aa-7ka and 8aa-8ka). The mother liquor on further work up provided trans-isomers which were recrystallized from ethanol and diethyl ether mixture (1:1) (7aa’-7ka’ and 8aa’-8ka’) (Fig. 3).7 These stereoisomers were characterized by their 1H NMR, IR and mass spectra in addition to their melting points and elementary analysis. These stereoisomers have identical IR spectra and elemental analysis but differ in their melting points, 1H NMR and mass spectra.

The synthetic route of 17057-04-4 has been constantly updated, and we look forward to future research findings.

Reference£º
Article; Anand, Preet; Singh, Baldev; Bioorganic and Medicinal Chemistry; vol. 20; 1; (2012); p. 521 – 530;,
Pyrroline – Wikipedia
1-Pyrroline | C4H7N – PubChem

Simple exploration of 17057-04-4

17057-04-4 4-(2,5-Dioxo-2,5-dihydro-pyrrol-1-yl)-benzoicacid 86925, apyrrolines compound, is more and more widely used in various.

With the rapid development and complex challenges of chemical substances, new drug synthesis pathways are usually the most effective.17057-04-4,4-(2,5-Dioxo-2,5-dihydro-pyrrol-1-yl)-benzoicacid,as a common compound, the synthetic route is as follows.

Derivative 1 was synthesized using a modified procedure reported by Willner etal. [51] as it is also described by Lau etal. [31]. A cooled suspension (0 C) of molecule 4 (211 mg, 0.97 mmol) in methylene chloride (4.5 mL) was treated with triethylamine (190 muL, 1.36 mmol) and isobutyl chloroformate (175 muL, 1.34 mmol). The mixture was stirred for 1 h at 0 C and at room temperature (22 C) for about 1 h. Afterwards, tert-butyl carbazate (128 mg, 0.97 mmol) dissolved in methylene chloride (0.8 mL) was added dropwise to the mixture and stirred for an additional 12 h at 22 C. The reaction mixture was diluted with ethyl acetate (55 mL) and methylene chloride (20 mL) and washed twice with saturated NaHCO3 (2 ¡Á 50 mL), twice with 0.1 N HCI (2 ¡Á 50 mL), twice with saturated NaCl (2 ¡Á 50 mL), and finally with H2O (50 mL). The organic phase was dried (MgSO4) and evaporated to give crude derivative 1. The product was purified by flash chromatography, using a mixture of hexanes/acetone (3/2), to yield 173 mg (54 %) of 1.

17057-04-4 4-(2,5-Dioxo-2,5-dihydro-pyrrol-1-yl)-benzoicacid 86925, apyrrolines compound, is more and more widely used in various.

Reference£º
Article; Hamelin-Morrissette, Jovane; Cloutier, Suzie; Girouard, Julie; Belgorosky, Denise; Eijan, Ana Maria; Legault, Jean; Reyes-Moreno, Carlos; Berube, Gervais; European Journal of Medicinal Chemistry; vol. 96; (2015); p. 259 – 268;,
Pyrroline – Wikipedia
1-Pyrroline | C4H7N – PubChem